

TECHNICAL SOLUTIONS
NORTH AMERICA

February 25, 2010 Via FedEx

Ms. Cheryl L. Newton, Director Air and Radiation Division United States Environmental Protection Agency Region 5 77 W. Jackson Blvd. Chicago, IL 60604-3590

RE:

Veolia ES Technical Solutions, L.L.C. Title V Permit #: V-IL-1716300103-08-01 Significant Modification

Ms Newton,

Veolia ES Technical Solutions, L.L.C. (Veolia), hereby submits for your review a Significant Modification to the Part 71 Permit Number V-IL-1716300103-08-01. This Significant Modification request revises the OPL's (feed rate limits) for Hg, SVM and LVM calculated from performance testing in August and September, 2008 that were previously submitted in a Significant Modification dated January 6, 2009.

On October 10, 2008, Veolia submitted a Significant Modification Request to revise the OPL's (feed rate limits) for mercury, SVM and LVM that were demonstrated during the above referenced testing be incorporated into the Part 71 permit. On January 6, 2009, Veolia submitted revised OPL's for mercury, SVM and LVM. Veolia had discovered that its metal feed rate calculations did not account for the moisture content of the solid waste. As a result, Veolia recalculated the OPL's for mercury, SVM and LVM. After subsequent conversations with the Agency, Veolia has again revised the OPL's for Hg, SVM and LVM taking into account the most conservation moisture values for the solids fed during testing, historical feed rates and capping the extrapolated value to three times the actual calculated feed rates.

The justification for and the revised tables defining these OPL's is attached.

Ms. Newton February 25, 2010 Page 2

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Upon review of this submittal, should the Agency have a need for additional information or questions, please contact Dennis Warchol at (618) 271-2804 or via e-mail at dwarchol@onyxes.com or me at (618) 271-2804 or via e-mail at dharris@onyxes.com.

Sincerely,

Veolia ES Technical Solutions, L.L.C.

Doug Harris

General Manager

Att.

cc: Genevieve Damico, USEPA

USEPA File

Veolia ES Technical Solutions, L.L.C. Significant Modification to Part 71 Permit Title V Permit #: V-IL-1716300103-08-01

Pursuant to 40 CFR 71.7(e)(3), Veolia ES Technical Solutions, L.L.C. is submitting a significant modification to our Part 71 Permit number V-IL-1716300103-08-01. The following pages detail the requested modification, supporting information and justification for the modification. The requested modification is as follows:

 Section 2.1 (C)(2) Operating Parameter Limits for Units 2, 3 and 4 Mercury, SVM and LVM

Modification of operating parameter limit (OPL's) table in Section 2.1 (C)(2).

Pursuant to the Request to Provide Information Pursuant to the Clean Air Act dated June 5, 2008 and subsequently revised on September 12, 2008, attached is a revised Operating Parameter Limit (OPL's) table that reflects the mercury, SVM and LVM OPL's defined in 40 CFR 63.1209.

The OPL's were modified from the original significant modifications submitted on October 10, 2008 and January 6, 2009 to account for moisture content in the solid feeds, historical feed rates of these metals and capping the extrapolated rate at three times the actual tested feed rate.

Veolia has extrapolated metal feed rate limits for mercury, SVM and LVM. These feed rates were extrapolated using the protocol provided by USEPA (data sheets provided). However, based on the extremely high System Removal Efficiencies (SRE's) achieved during this testing, Veolia has lowered the extrapolated metal feed rates for SVM and LVM at Unit 4 to account for historical metal feed rate data as defined in 40 CFR 1209(n)(2)(ii)(B)(2).

In order for extrapolation to be utilized, Veolia conducted these performance tests using metal feedrates as defined in 40 CFR 1207 (f)(1)(x)(B), that were greater than "the historical of normal metals feed rates" fed to the units over the last four years. Veolia has provided to the Agency feed rate data for SVM, LVM and Mercury since July 1, 2004 to justify the above requirement. As is detailed, the metals fed to the incinerators during the performance test were higher than the historical range of normal metal feeds over the last four years.

As stated above, Veolia's extrapolated metal feed rates defined in the attached table used the extrapolated method defined in the Performance Test Plan as required by 40 CFR 1207 (f)(1)(x) (A) and given to Veolia by USEPA Region 5 as

an approved method, but also took into account historical metal feed rates for each unit in setting these extrapolated values, again as required by 40 CFR 1209 (n)(2)(ii)(B)(2). Veolia is requesting approval of these extrapolated feed rates not only because it followed the requirements of the Regulations but it has been the Agency's practice of permitting extrapolation with other Region 5 incinerators who in some cases were not required to follow 40 CFR 1207 (f)(1)(x) or 40 CFR 1209 (n)(2)(ii)(B)(2). Veolia has reviewed CPT plans (Project Number 07136-029-100 and Project Number 010302) from two other Region 5 incinerators and have found that both were allowed to extrapolate but did not provide all the information required in 40 CFR 1207 (f)(1)(x). It is also noted that in recent comments by the USEPA, Region 5 dated April 2, 2008 and signed by William MacDowell on one of these incinerator's CPT plans that the Agency acknowledges that the requirements for extrapolation were not raised in the approved 2003 plan and subsequent results that included extrapolation and "want to correct this oversight for the 2008 CPT." Veolia only details this to establish that a consistent pattern has not been used to approve or deny extrapolation but requests that Veolia's extrapolation be approved based on the merits of the test results and that the requirements for extrapolation have been complied with as defined in the MACT regulation.

Section 2.1(C)(2)

Permittee must operate Units 2, 3, and 4 under these operating parameter limits (OPL's) to demonstrate compliance with Subpart EEE.

Operating Parameters	Unit #2	Unit #3	Unit #4	AWFCO
Total Feedrate of mercury lbs/hr	0.0057	0.070	0.219	12-hour rolling averages
Total Feedrate of semi-	189	193	191	12-hour rolling
volatile metals lbs/hr	9			average limits
Total feedrate of low	140	143	151	12-hour rolling
volatile metals lbs/hr				average limits

ximum extrap. value	3 times feed	1)							
•					Total		Total		
					LVM Emis.		SVM Emis.		Hg Emis.
· · · · · · · · · · · · · · · · · · ·		Stackflow	Oxygen	LVM Feed	Rate (ER)	SVM Feed	Rate (ER)	Hg Feed	Rate (ER)
Test Data	Run	(dscfm)	(% dry)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Unit 2 (8/08)	1	5496	11.72					0.0023	0.000791
	2	5572	11.54					0.0017	0.000822
	3	5357	11.3				*	0.0016	0.000799
Unit 2 (9/08)	1	4698	11.21	46.82	0.000125	62.06	0.000398		
,	2	5099	10.91	46.52	0.0000438	63.46	0.000144		
*	3	5248	11.35	47.17	0.000101	63.27	0.000364		
Unit 3 (8/08)	1	5665	11.99	47.71	0.000388	64.07	0.000799	0.0016	0.000748
	2	5719	10.96	47.31	0.000308	65	0.00103	0.0022	0.000938
V.	3	5890	11.98	48.01	0.00022	63.78	0.000655	0.0018	0.000818
Unit 4 (8/08)	1	17280	12.27	50.61	0.000214	63.51	0.0009	0.0257	0.00153
, ,	2	17255	12.13	50.65	0.000425	63.45	0.0013	0.026	0.000996
	3	17189	11.63	49.79	0.000586	64.01	0.00116	0.0264	0.00108

		2008 Sig. Mod.	2008 Metal	2010 Sig. Mod.	2010 Metal	
	Metals	Extrap. Value Requested	Feed Basis	Extrap. Value Requested	Feed Basis	12 Hour Max
Unit	Group	(lb/hr)				(lb/hr)
2	LVM	399	47	140	47	84
2	SVM	459	63	189	63	91
2	Hg	0.017	0.0047	0.0057	0.0019	0.0055
3	LVM	399	51	143	48	77
3	SVM	459	65	193	64	82
3	Hg	0.017	0.0051	0.0057	0.0019	0.0054
4	LVM	500	55	151	50	77
4	SVM	500	65	191	64	58
4	Hg	0.257	0.030	0.078	0.026	0.060

Maximum extrap. value 3	times fee	ed)							
imaxiii axii ay. Valaa a									
USEPA Approved Exti	apolatio	n Method		*				150	
						2			
		[1]	[2]	[3]	[4]	Proposed	Proposed		
Unit 2 (LVM)		Removal		Max. ER at 75%		Extrapolation			25
Em. Std.: 92 ug/dscm		Efficiency (RE)	Stackflow	of Standard	OPL	Limit (Total)	Limit (Pump.)		
(9/08)		(%)	(dscfm,7%O2)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)		
	1	99.99973	6718	0.001734	649				
	2	99.99991	7075	0.001826	1939				
	3	99.99979	7614	0.001965	918				
	Avg	99.99981	7136	0.001841	1169	140	140	120	
		[1]	[2]	[3]	[4]	Proposed			
Unit 2 (SVM)		Removal		Max. ER at 75%	SVM Feedrate	Extrapolation			
Em. Std.: 230 ug/dscm		Efficiency (RE)	Stackflow	of Standard	OPL	Limit			
(9/08)		(%)	(dscfm,7%O2)		(lb/hr)	(lb/hr)		7550	
				, ,	,				
N .	1	99.99936	6718	0.004334	676				
	2	99.99977	7075	0.004564	2012				
	3	99.99942	7614	0.004912	854				
	Avg	99.99952	7136	0.004604	1180	189			
11. '(0 (/ 1)		[1]	[2]	[3]	[4]	Proposed			
Unit 2 (Hg)		Removal		Max. ER at 75%	Hg Feedrate	Extrapolation			
Em. Std.: 130 ug/dscm		Efficiency (RE)		of Standard	OPL	Limit			
(8/08)		(%)	(dscfm,7%O2)	(lb/hr)	(lb/hr)	(lb/hr)			
	1	65.61	8291	0.003024	0.0088		(4)		
	2	51.65	8246	0.003007	0.0062				
	3	50.06	7732	0.002819	0.0056				
	Avg	55.77	8090	0.002950	0.0069	0.0057			
	Evtranolat	ted metals feedrate	e calculated usi	ng LISEDA approv	and mothod				
	Litapola	led metals recurate	es calculated usi	ing OSEFA approv	eu metriou.				

Maximum extrap. value	3 times fee	d)						
•								
					·		*	
		[1]	[2]	[3]	[4]	Proposed	Proposed	
Unit 3 (LVM)		Removal		Max. ER at 75%	LVM Feedrate	Extrapolation	Extrapolation	
Em. Std.: 92 ug/dscm		Efficiency (RE)	Stackflow	of Standard	OPL	Limit	Limit (Pump.)	
30		(%)	(dscfm,7%O2)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	
	1	99.99919	8802	0.002272	279			
	2	99.99935	7975	0.002058	316			
	3	99.99954	9142	0.002359	515			
	Avg	99.99936	8640	0.002333	370	143	143	-
			55.5	5,002_00	0,0	, , , ,	1.10	
		[1]	[2]	[3]	[4]	Proposed		
Unit 3 (SVM)		Removal	1-1	Max. ER at 75%	SVM Feedrate	Extrapolation		
Em. Std.: 230 ug/dscm	Э.	Efficiency (RE)	Stackflow	of Standard	OPL	Limit		
		(%)	(dscfm,7%O2)		(lb/hr)	(lb/hr)		
	1	99.99875	8802	0.005679	455			
	2	99.99842	7975	0.005079	325	8		
	3	99.99897	9142	0.005145	574			
	Avg	99.99871	8640	0.005574	451	193		
	Avg	99.99071	0040	0.003374	431	193		41
		[1]	[2]	[3]	[4]	Proposed		
Unit 3 (Hg)		Removal	[4]	Max. ER at 75%	Hg Feedrate	Extrapolation		
Em. Std.: 130 ug/dscm		Efficiency (RE)	Stackflow	of Standard	OPL	Limit		
		(%)	(dscfm,7%O2)	(lb/hr)	(lb/hr)	(lb/hr)		
				Vinney Vi		(
	1	53.25	8802	0.003210	0.0069			
	2	57.36	7975	0.002908	0.0068			
	3	54.56	9142	0.003334	0.0073			
	Avg	55.06	8640	0.003151	0.0070	0.0057		
	Extrapolat	 ed metals feedrate	es calculated usi	ng USEPA approv	ed method			
	Zarapolat	- Incluid recurate	o calculated dal	ing COLI / Cappiov	ca metrica.			

Maximum extrap, value :	3 times fee	ed)	· ·						
		[1]	[2]	[3]	[4]	Proposed	Proposed		
Unit 4 (LVM)		Removal	[~j	Max. ER at 75%	LVM Feedrate	Extrapolation	Extrapolation		
Em. Std.: 92 ug/dscm		Efficiency (RE)	Stackflow	of Standard	OPL	Limit	Limit (Pump.)		
		(%)	(dscfm,7%O2)	SECTION OF THE PROPERTY OF THE PARTY SECTION OF THE	(lb/hr)	(lb/hr)	(lb/hr)		
	1	99.99958	27711	0.007151	1691				
	2	99.99916	27234	0.007131	838		8		
	3	99.99882	25683				3		
	Avg	99.99919	26876	0.006628 0.006936	563 1031	151	151		
	Avg	99.99919	20070	0.000930	1031	151	151		
7									
11 1/4 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6 /		[1]	[2]	[3]	[4]	Proposed			
Unit 4 (SVM)		Removal		Max. ER at 75%	SVM Feedrate	Extrapolation			
Em. Std.: 230 ug/dscm		Efficiency (RE)	Stackflow	of Standard	OPL	Limit			
	k.	(%)	(dscfm,7%O2)	(lb/hr)	(lb/hr)	(lb/hr)			
*		00 00050	07744	0.047070	1000				
	1	99.99858	27711	0.017878	1262				
	2	99.99795	27234	0.017571	858				
	3	99.99819	25683	0.016570	914				
	Avg	99.99824	26876	0.017340	1011	191			
		F41	F03	F03	FAT	D			
Unit 4 (Hg)		[1] Removal	[2]	[3] Max. ER at 75%	[4]	Proposed			
Em. Std.: 130 ug/dscm		Efficiency (RE)	Stackflow	of Standard	Hg Feedrate OPL	Extrapolation Limit			
Lin. Ota 130 ag/ascin		(%)	(dscfm,7%O2)	(lb/hr)	(lb/hr)	(lb/hr)			
		(70)	(430111,7 7002)	(ID/III)	(ID/III)	(ID/III)			
	1	94.05	27711	0.010105	0.170				
	2	96.17	27234	0.009931	0.259				
	3	95.91	25683	0.009365	0.229				
	Avg	95.38	26876	0.009801	0.219	0.078			
	Extrancla	tod motals for duct		ng UCEDA an	l				
	⊏xtrapola	ted metals feedrate	es calculated usi	ng USEPA approv	ea method.			45	

TECHNICAL SOLUTIONS
NORTH AMERICA

May 12, 2010 Via FedEx

Ms. Cheryl L. Newton, Director Air and Radiation Division United States Environmental Protection Agency Region 5 77 W. Jackson Blvd. Chicago, IL 60604-3590

RE:

Veolia ES Technical Solutions, L.L.C. Title V Permit #: V-IL-1716300103-08-01 Significant Modification

Ms Newton,

Veolia ES Technical Solutions, L.L.C. (Veolia) submitted a Significant Modification Request to our Part 71 Title V Permit on October 10, 2008, to revise the OPL's (feed rate limits) for mercury, SVM and LVM that were demonstrated during metals testing conducted in August and September, 2008. On January 6, 2009, Veolia submitted revised OPL's for mercury, SVM and LVM. Veolia had discovered that its metal feed rate calculations did not account for the moisture content of the solid waste. As a result, Veolia recalculated the OPL's for mercury, SVM and LVM. After subsequent conversations with the Agency, Veolia, on February 25, 2010, again submitted revised OPL's for Hg, SVM and LVM taking into account the most conservative moisture values for the solids fed during testing, historical feed rates and capping the extrapolated value to three times the actual calculated feed rates.

Due to the significant changes made to the original October 10, 2008 and the January 6, 2009 Part 71 Significant Modifications, Veolia is withdrawing those modification requests. In lieu of those submittals, Veolia submitted a Significant Modification on February 25, 2010 that should act as the modification of record.

Ms. Newton May 11, 2010 Page 2

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Upon review of this submittal, should the Agency have a need for additional information or questions, please contact Dennis Warchol at (618) 271-2804 or via e-mail at dwarchol@onyxes.com or me at (618) 271-2804 or via e-mail at dharris@onyxes.com.

Sincerely,

Veolia ES Technical Solutions, L.L.C.

Doug Harris

General Manager

Att.

cc: Genevieve Damico, USEPA

USEPA File